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1 Turning Set Functions Into Point Functions

1.1 Recap + dealing with the empty set

Last time, we had a finite alphabet A, and given U C P(A), we looked at T,,(U) = {z €
A" :p, € U}. We looked at the asymptotic behavior of the size of this set without relying
on explicit formulae. We defined S,,(U) = log |T,,(U)].

What if T,,(U) = @? Here are two answers.

1. If U # @& is open, if we pick p € U, let n be very large and pick X ~ p*™. Then
P(px € U) — 1 as n — oo by the Weak Law of Large Numbers. So T, (U) # @ for
all sufficiently large n.

2. We should let S, take the value —oo. This will be fine, as long as we’re not subtracting
negative infinities or multiplying. This is the better answer

Last time, we showed that S,,(U) is superadditive if U is convex:
Sntm(U) = Sn(U) + Sm(U).
By Fekete’s lemma, S(U) = lim,, 1 S,,(U) exists and equals sup,, =5, (U). This tells us that
[Tu(U)] = SO,

This produces a set function S : {convex open subsets of P(A)} — [—00,00]. We would
like a point function S : P(A) — [—o00, 00] such that s(U) = sup{S(p) : p € U}.
1.2 General considerations: when do set functions give rise to point

functions?

We will step away for a while to a more abstract setting: Let X be a topological space, let
U be a cover of X by open sets, and let S : U — [—00, 00]. When is there a point function
S : X — [—00,00] such that S(U) = sup{S(z) : x € U}?

The first necessary condition is



(Sl) IfUU,....Ubeldand U C UL U---UUy, then S(U) < max,S(UZ)

Unfortunately, this condition is not sufficient, but we will give a sufficient condition later.
Aside: Call S locally finite if for every z € X, there is some U € U such that x € U
and S(U) < oo.
Now let’s define S(z) := inf{S(U) : U € U,U > x}. Then the following is true.

Lemma 1.1.
S(U) > sup{S(x) : x € U}.

Lemma 1.2. The point function S must be upper semicontinuous.

Proof. 1f S(x) < a, then there exists some U € U with x € U and S(U) < a, but then
UC{S<a}. O

Now suppose that K C X is compact. We want to define S for these types of sets,
rather than just open sets. Define

S(K) :=inf{max S(U;) : Uy,..., U, e U, K CU; U---UUy}.

Remark 1.1. If S is locally finite, then S(K) < oo for all compact K.
Remark 1.2. If K = {z}, then S(K) = S(x).
Lemma 1.3. If U € U and U is compact, then S(U) < S(U).

This is the first moment where we actually use the property (S1).
Proof. If Uy ..., Uy D U D U, then by (S1), S(U) < max; S(U;). O
Corollary 1.1. IfU € U is also compact, then S(U) is unambiguous.
Proof. The previous lemma gives S(U) < S(U) < S(U). O
Lemma 1.4. For every compact K # &, we have
S(K) =sup{S(x):x € K}.

Proof. 1f {z} C K, then
S(x) = S({x}) < S(K).

For the other direction, if sup,cx s(x) = oo, we are done. So assume that this is < oo
and let a > supg S(z). Then for any = € K, there is some V,, € U with S(V;,) < a. K is
compact, so there exist z1,...,z, with K DV, U---UV,,, and so

i

S(K) <maxS(V,,) < a.

Taking the inf over as gives
S(K) < sup S(x). O
K
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Here is the second necessary condition on the set function S:
(S2) (“Inner regularity”) S(U) = sup{S(K) : K is compact, K C U}
Lemma 1.5. If (S1) and (S2) hold, then S(U) = sup{S(z) : x € U}.
Proof. We already know >. For the reverse inequality, use (S2): It is enough to show that

sup S(z) = S(K) < sup S(z).
K U
for all compact K C U. This inequality holds by the previous lemma. O

1.3 The settings we will apply this general theory to

The main settings we care about are:

1. Z is some “nice” topological space (usually a compact metric space), X = M(Z),
the finite signed Borel measures on Z, and i is the collection of convex subsets open
for the weak topology defined by Cy(Z) (i.e. the weak™ topology if Z is a compact
metric space).

2. X =R% and U is the collection of convex open sets.

A suitable intermediate generality for us to cover these two cases will be: X is a locally
convex topological vector space and U is the collection of open convex subsets.
Next time, we will

e find conditions making the point function S concave,

e observe a general “sequence counting” situation where those conditions hold.
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