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1 Turning Set Functions Into Point Functions

1.1 Recap + dealing with the empty set

Last time, we had a finite alphabet A, and given U ⊆ P (A), we looked at Tn(U) = {x ∈
An : px ∈ U}. We looked at the asymptotic behavior of the size of this set without relying
on explicit formulae. We defined Sn(U) = log |Tn(U)|.

What if Tn(U) = ∅? Here are two answers.

1. If U 6= ∅ is open, if we pick p ∈ U , let n be very large and pick X ∼ p×n. Then
P(pX ∈ U) → 1 as n → ∞ by the Weak Law of Large Numbers. So Tn(U) 6= ∅ for
all sufficiently large n.

2. We should let Sn take the value−∞. This will be fine, as long as we’re not subtracting
negative infinities or multiplying. This is the better answer

Last time, we showed that Sn(U) is superadditive if U is convex:

Sn+m(U) ≥ Sn(U) + Sm(U).

By Fekete’s lemma, S(U) = limn
1
nSn(U) exists and equals supn

1
nSn(U). This tells us that

|Tn(U)| = eS(U)n+o(n).

This produces a set function S : {convex open subsets of P (A)} → [−∞,∞]. We would
like a point function S : P (A)→ [−∞,∞] such that s(U) = sup{S(p) : p ∈ U}.

1.2 General considerations: when do set functions give rise to point
functions?

We will step away for a while to a more abstract setting: Let X be a topological space, let
U be a cover of X by open sets, and let S : U → [−∞,∞]. When is there a point function
S : X → [−∞,∞] such that S(U) = sup{S(x) : x ∈ U}?

The first necessary condition is
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(S1) If U,U1, . . . , Uk ∈ U and U ⊆ U1 ∪ · · · ∪ Uk, then S(U) ≤ maxi S(Ui).

Unfortunately, this condition is not sufficient, but we will give a sufficient condition later.
Aside: Call S locally finite if for every x ∈ X, there is some U ∈ U such that x ∈ U

and S(U) <∞.
Now let’s define S(x) := inf{S(U) : U ∈ U , U 3 x}. Then the following is true.

Lemma 1.1.
S(U) ≥ sup{S(x) : x ∈ U}.

Lemma 1.2. The point function S must be upper semicontinuous.

Proof. If S(x) < a, then there exists some U ∈ U with x ∈ U and S(U) < a, but then
U ⊆ {S < a}.

Now suppose that K ⊆ X is compact. We want to define S for these types of sets,
rather than just open sets. Define

S(K) := inf{max
i

S(Ui) : U1, . . . , Uk ∈ U ,K ⊆ U1 ∪ · · · ∪ Uk}.

Remark 1.1. If S is locally finite, then S(K) <∞ for all compact K.

Remark 1.2. If K = {x}, then S(K) = S(x).

Lemma 1.3. If U ∈ U and U is compact, then S(U) ≤ S(U).

This is the first moment where we actually use the property (S1).

Proof. If U1 . . . , Uk ⊇ U ⊇ U , then by (S1), S(U) ≤ maxi S(Ui).

Corollary 1.1. If U ∈ U is also compact, then S(U) is unambiguous.

Proof. The previous lemma gives S(U) ≤ S(U) ≤ S(U).

Lemma 1.4. For every compact K 6= ∅, we have

S(K) = sup{S(x) : x ∈ K}.

Proof. If {x} ⊆ K, then
S(x) = S({x}) ≤ S(K).

For the other direction, if supx∈K s(x) = ∞, we are done. So assume that this is < ∞
and let a > supK S(x). Then for any x ∈ K, there is some Vn ∈ U with S(Vn) < a. K is
compact, so there exist x1, . . . , xk with K ⊇ Vx1 ∪ · · · ∪ Vxk

, and so

S(K) ≤ max
i

S(Vxi) < a.

Taking the inf over as gives
S(K) ≤ sup

K
S(x).
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Here is the second necessary condition on the set function S:

(S2) (“Inner regularity”) S(U) = sup{S(K) : K is compact,K ⊆ U}

Lemma 1.5. If (S1) and (S2) hold, then S(U) = sup{S(x) : x ∈ U}.

Proof. We already know ≥. For the reverse inequality, use (S2): It is enough to show that

sup
K

S(x) = S(K) ≤ sup
U

S(x).

for all compact K ⊆ U . This inequality holds by the previous lemma.

1.3 The settings we will apply this general theory to

The main settings we care about are:

1. Z is some “nice” topological space (usually a compact metric space), X = M(Z),
the finite signed Borel measures on Z, and U is the collection of convex subsets open
for the weak topology defined by Cb(Z) (i.e. the weak* topology if Z is a compact
metric space).

2. X = Rd and U is the collection of convex open sets.

A suitable intermediate generality for us to cover these two cases will be: X is a locally
convex topological vector space and U is the collection of open convex subsets.

Next time, we will

• find conditions making the point function S concave,

• observe a general “sequence counting” situation where those conditions hold.
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